1. (10 points) The phase velocity v of transverse wave in a crystal of atomic separation a is given by:

$$v = c(\frac{\sin(ka/2)}{(ka/2)})$$

where k is the wave number and c is a constat. Find the group velocity and discuss the limits for long wavelength.

- 2. An object of mass \boldsymbol{m} is connected to a harmonic oscillator with stiffness constant \boldsymbol{s} , natural angular frequency ω_0 , and damping constant \boldsymbol{r} is driven by an external force $F(t) = F_0 cos(\omega t)$.
 - (a) (10 points) Show that the displacement amplitude is given by:

$$x = \frac{F_0}{\omega\sqrt{r^2 + (m\omega - s/\omega)^2}}$$

- (b) (5 points) Show that the displacement amplitude is independent of ω at low frequencies
- (c) (5 points) Show that the velocity amplitude at velocity resonance is independent of ω
- (d) (5 points) Show that the frequency amplitude is independent of ω at high frequencies
- 3. (20 points) Find the fourier transformation of the function $f(x) = 1 x^2$ in the interval [-1,1]
- 4. (20 points) A ring of radius \mathbf{R} carries a charge \mathbf{q} that is uniformly distributed on its circumference. If an electron is released at point \mathbf{z} above its center where $z \ll R$, show that the electron will exhibit a simple harmonic motion and find its period.

- 5. The equal masses in the figure oscillate in the vertical direction.
 - (a) (15 points) Find the frequencies of the normal modes of oscillation and discuss the relative amplitude of the two masses
 - (b) (5 points) What happens when either of the two masses is much larger than the other.
- 6. For three identical masse that are loaded on a string (the distance between the masses is a) answer the following:
 - (a) (8 points) Find the normal frequencies $\omega_j^2 = 2\omega_0^2(1 \cos(\frac{j\pi}{n+1}))$
 - (b) (12 points) Find the relative displacement of the three masses for each normal mode frequency $-A_{r-1} + (2 \frac{ma\omega^2}{T})A_r A_{r+1} = 0$
- 7. (25 points) Two acoustic mediums of impedance Z_1 and Z_2 show by applying the boundary conditions that if we insert a quarter wavelength medium of impedance $Z_2 = \sqrt{(Z_1 Z_3)}$ then the coefficient of sound transition is 1

Question:	1	2	3	4	5	6	7	Total
Points:	10	25	20	20	20	20	25	140
Score:								

